Complex-Valued Restricted Boltzmann Machine for Direct Speech Parameterization from Complex Spectra

نویسندگان

  • Toru Nakashika
  • Shinji Takaki
  • Junichi Yamagishi
چکیده

This paper describes a novel energy-based probabilistic distribution that represents complex-valued data and explains how to apply it to direct feature extraction from complex-valued spectra. The proposed model, the complex-valued restricted Boltzmann machine (CRBM), is designed to deal with complex-valued visible units as an extension of the wellknown restricted Boltzmann machine (RBM). Like the RBM, the CRBM learns the relationships between visible and hidden units without having connections between units in the same layer, which dramatically improves training efficiency by using Gibbs sampling or contrastive divergence (CD). Another important characteristic is that the CRBM also has connections between real and imaginary parts of each of the complex-valued visible units that help represent the data distribution in the complex domain. In speech signal processing, classification and generation features are often based on amplitude spectra (e.g., MFCC, cepstra, and mel-cepstra) even if they are calculated from complex spectra, and they ignore phase information. In contrast, the proposed feature extractor using the CRBM directly encodes the complex spectra (or another complex-valued representation of the complex spectra) into binary-valued latent features (hidden units). Since the visible-hidden connections are undirected, we can also recover (decode) the complex spectra from the latent features directly. Our speech coding experiments demonstrated that the CRBM outperformed other speech coding methods, such as methods using the conventional RBM, the mel-log spectrum approximate (MLSA) decoder, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-Valued Restricted Boltzmann Machine for Direct Learning of Frequency Spectra

In this paper, we propose a new energy-based probabilistic model where a restricted Boltzmann machine (RBM) is extended to deal with complex-valued visible units. The RBM that automatically learns the relationships between visible units and hidden units (but without connections in the visible or the hidden units) has been widely used as a feature extractor, a generator, a classifier, pre-traini...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Modeling pigeon behaviour using a Conditional Restricted Boltzmann Machine

In an effort to better understand the complex courtship behaviour of pigeons, we have built a model learned from motion capture data. We employ a Conditional Restricted Boltzmann Machine (CRBM) with binary latent features and real-valued visible units. The units are conditioned on information from previous time steps to capture dynamics. We validate a trained model by quantifying the characteri...

متن کامل

Modeling pigeon behavior using a Conditional Restricted Boltzmann Machine

In an effort to better understand the complex courtship behaviour of pigeons, we have built a model learned from motion capture data. We employ a Conditional Restricted Boltzmann Machine (CRBM) with binary latent features and real-valued visible units. The units are conditioned on information from previous time steps to capture dynamics. We validate a trained model by quantifying the characteri...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018